

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 712-717 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209712717 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 712

A Software Method for Telecommand and Telemetry

Implementation of Aalto-2 CubeSat

Dr.C.Brintha Malar
1
 Dr.K.Siva Sankar

2

1
Assistant Professor, Udaya School of Engineering

2
Associate Professor, Noorul Islam Centre for Higher Education

Date of Submission: 15-11-2020 Date of Acceptance: 30-11-2020

--

ABSTRACT: This work concentrates on the

development of telecommand and telemetry

handler software for a 2 kg Aalto-2 nanosatellite,

currently scheduled for launch in December 2016.

The satellite is part of the international QB50

thermosphere mission and it is developed by Aalto

University in Espoo, Finland. The telecommand

and telemetry (TC/TM) handler, in charge of com-

medications, is one of the most important systems

of satellite software, which is executed by On

Board Computer (OBC) software. In this thesis, the

TC/TM handler subsystem is designed, giving it a

special attention in maintaining sim- plicity and

reliability. The design process is started with the

derivation of re- quirements and constraints.

The software is implemented for Free RTOS, an

open-source real-time operat- ing system, which is

selected as operation environment of the satellite

main OBC software. The library provides functions

of dynamic function call in C. The UHF driver

library handles incoming and outgoing low-level

communications protocols, and the Coffee File

System implements storage management.

Keywords: Aalto-2, TC/TM Handler, dynamic

dispatch, dyncall, PUS, scripting, CubeSats, Free

RTOS, concatenative language

I. INTRODUCTION
The communication subsystem is an

essential element of every spacecraft. During the

early days of space technology, spacecrafts had

very primitive communication subsystem with

simple periodical science and housekeeping data

telemetry transmissions. Research and development

was needed in order to gain more control and

reliability, which is vital for missions such as space

exploration, global position systems or weather

survey. Decades have passed and technology has

developed, so today the ground station gives full

control over satellites. Nowadays, new ambitious

missions are being planned that require more

advanced, smarter, faster and more autonomous

designs of hardware and software.

The data handling software usually runs in

the On Board Computer (OBC). It is responsible

for decoding incoming messages, called telecom-

mands (TC), and encoding outgoing messages,

which are called telemetry (TM) packets. The

whole software element is called the Telecommand

and Telemetry (TC/TM) Handler. Usually, on

board software is developed for a specific

platform and architecture, which means it is

difficult to reuse in other spacecrafts. Therefore,

this TC/TM software (as most of the satellite

software) is tailor-made for certain spacecraft in

order to give better design and implementation.

The following work develops new approaches for

communications software to achieve the

requirements of a specific spacecraft mission. This

new approach is done with concatenative

programming language definitions and

characteristics.

The goal of this work is to design and

implement a software architecture for telecommand

and telemetry handling, as part of the on board

software of the Aalto-2 satellite, by utilizing

concatenative programming model. The software

shall fulfill the requirements and restrictions set by

satellite modules hardware and mission

specifications.

II. BACKGROUND
The work is done for the Aalto-2 CubeSat

satellite, which belongs to the international QB50

satellite constellation. The next chapter gives a

short overview of CubeSat satellites, their

communication implementations and the QB50

project and the Aalto-2 satellite.

2.1 Small satellites and CubeSats

Small satellites are defined as those

spacecrafts that weigh below 500 kg. The concept

was proposed to reduce the building, developing

and launch- ing cost. Among the categories in

small satellites, the nanosatellite have become the

most popular, due to affordable cost and the

release of the CubeSat standard.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 712-717 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209712717 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 713

The CubeSat standard was proposed by

professor Jordi Puig-Suari from California

Polytechnic State University and professor Bob

Twiggs from Standford University in 1998. Their

goal was to grant graduated students the

opportunity to design, implement, build and

operate spacecrafts simi- lar to the first one of

history: the Sputnik. In 1999 the CubeSat standard

was released and it become a popular platform to

develop satellites. Nowa- days, the standard is

used widely by university teams across the world.

CubeSats weigh between 1 kg to 10 kg and are

shaped as cubes (10 x 10 x10 cm3), with a typical

weight of 1,3 kg per unit (1U-CubeSat). This new

satellite class was embraced due to its low

developing cost, simplified design and cheap

launching cost, which is normally performed

alongside other larger satellites. CubeSats

usually are similar with each other, be- cause

they follow the same standard, often using

similar (even identical) components (commercial

components adapted or certified for space) and

designs. CubeSats also usually use amateur radio

bands (Very High Frequency, VHF; and Ultra High

Frequency, UHF) for communication. As

development cost for nanosatellites is relatively

low, developing CubeSats allows hardware and

software experimentation that is too expensive for

larger satellites. However, new problems are

always found as well as solutions that led to new

discoveries and techniques. [13]

III. IMPLEMENTATION OF

COMMUNICATION
The TC/TM architecture design that uses

concatenative language features combined with

native C and FreeRTOS. The designed architecture

is divided in two structures: the Listener and the

Interpreter. The first one, the Listener, is designed

and programmed as finite state machine that

communicates with the Interpreter, which is

programmed as Turing machine.

3.1 TC/TM Handling Implementation

The telecommunication handler of the

Aalto-2 is built in two different parts: the

Listener and the Interpreter.

Figure 3.1: TC/TM Handler Architecture

In figure 3.1, the two software structures

are being represented: the first one is the Listener,

whose function is to receive and check incoming

telecommands. Additionally, Listener implements

a few services procedures. The second, is the

Interpreter, which interprets a command or group

of commands, routing them to the targeted module

to be executed.

Both pieces use external C libraries that

implement different key procedures. The most

relevant one is the Dyncall library. The library is

a group of files which implements run-time

function calls in C. Another important library is

the Stack library. It implements C functions and

structures to create and manage a byte stack.

Additionally, more libraries where build in order

to meet the requirements, among those libraries the

most relevant are, the System Monitor, which is a

set of functions to that implements task watchdog.

Finally, the file system support libraries, the Coffee

File System (CFS) and the Raw File System

(RAW); they both implement methods to manage

the OBC file system.

Furthermore, there are some

concepts/variables that are needed to be exposed

before Listener and Interpreter function

explanation.

First of all, they Sat Function variable

and Format variable: the first one contains the

satellite C function address, meanwhile, the second

one stores the signature arguments. Both variables

are stored in an encoded dictionary-like array that

has all the satellite functions a specific APID can

execute. A second important variable is the

StackByte. The variable stores the location and

position of the SatFunction arguments. When a

command is called, its arguments can be located

either inside the telecommand application data

field that encoded that command or inside the

satellite stack. Additionally, the last bit defines if

ground station request immediately telemetry of the

result after telecommand execution.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 712-717 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209712717 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 714

Finally, the C function evaluate single takes

SatFunction, Format and a stack as arguments

and it is tasked to evaluate and execute the

encoded telecommand, returning a result of this

execution as shown in figure 3.2.

Figure 3.2: evaluate single block diagram

3.1.1 The Listener

This first piece of the TC/TM handler is

the receiving of a packet and checking if it is a

correct telecommand. These procedures are

performed by a Free RTOS FSM task called

Listener.

Figure 3.3: Listener Finite State Machine

The designed software can be depicted, as

seen in figure 3.3, as a state machine with four

basic states:

Idle: is the starting point where the

Listener expects a command from the GS. The

satellite receives byte per byte; therefore, the

Listener remains at this state until there is at least

one byte encoded as the hexadecimal value 0x18

(which corresponds with the first byte of the

Packet ID format field). Finally, the Listener

understands that this first byte may be the

beginning of a TC. Then it changes the state to

Header Processing. Otherwise, it remains at Idle

state.

Header Processing: receives the rest of the header

bytes and creates a command structure with APID,

service, subservice and packet length. Then it

checks if these parameters are inside the correct

boundaries of the satellite definitions (e.g.

maximum packet length, APID maximum number,

etc). If all of them are correct, the Listener knows

that the TC has a correct Header structure, and state

is set to Data Processing. Otherwise is set to

Recovery state.

Data Processing: is reached when the Listener

has a correct PUS Header. While at this state,

the Listener receives the rest of the packet

(depending on the packet length value) and sets

the following variables: Stackbyte, application

data and PEC. Then it calculates a new checksum,

and checks it with the one stored in PEC variable.

If both variables are identical, then the Listener is

sure that the message is a correct PUS format TC.

Once a TC is correctly identified, the command can

follow two different paths depending on APIDs

value. If APID is 1, it means this command is

meant for the Listener and will be execute

immediately after. On the other hand, if APID is

different from 1, the TC is meant for other

application processes inside the satellite, and

telecommand message is sent to the Main

Interpreter. Either way, state variable is set to Idle.

If the Listener has found that this message PEC is

different from the calculated one, or an error

happened during variable assigning process (e.g.

malloc failed), the message is discarded and state

is set to Recovery.

Recovery: is the state triggered when a problem

has occurred in Header Processing or Data

Processing. There are many different situations that

triggered this state (e.g. Wrong value in TC,

timeout reached, run out of RAM, etc). Despite the

different situations, the Listener Recovery has one

execution direction: first discard the processed TC

(if wrong), then, if there is more byte data

waiting to be taken, tries to find if there is a second

TC by searching the 0x18 hexadecimal value. If

this value is found, Header Processing state is set,

so the Listener can process a possible TC.

Otherwise it reaches the end of the buffer. Despite

the encounter situation, the Listener generates a

failure report (an error happened), and at the end, it

resets local variables and state to Idle.

Finally, the Listener task can execute some

telecommands locally to manage the satellite

beacon, state reporting tasks and Interpreter

management

3.2 Aalto-2 TC/TM Chomsky classifications

TC/TM software was classified using the Chomsky

hierarchy. Now, the same analysis should be

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 712-717 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209712717 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 715

performed with the TC/TM implementation of

Aalto-2. As explained in previous section 3.1, the

TC/TM is composed by two structures: the Listener

behaves as a regular grammar, that receives TC

that can change the state, in other words, a type

3 machine. On the other hand, the Interpreter

employs memory, rising its category to type 2.

This memory is structured as a stack-byte which

stores elements of any type. Additionally it can do

composition of functions by employing quotations.

As this stack can have multiple modification from

functions, other TCs and the interpreter, it can be

seen as a random access memory. Therefore, type

1 is reached, because the memory can be

modified. Finally, if overwritten is allowed, TCs

can delete and write in the memory, theoretically

having infinite virtual memory and reaching type

0. Summarizing, the TC/TM software is a finite

state ma- chine that communicates with a Turing

machine.

But the overall TC/TM structure is the

combination of both models. Each TC is sent as a

message that is first process by the Listener, then

this command is processed and execute by the

Interpreter and then it replies back. The process

could be seen as FSM of three states (receive,

interpret and reply). But that is a short

description, because it does not take into count

that interpreter has memory. Watching the big

picture, the Listener FSM is just a function

executed at the start whenever a TC is received,

meaning that the TC/TM is categorized as the

Interpreter model, which is type

IV. TESTING
This chapter introduces the testing

methodologies used to detect problems and bugs

as well as the modifications made. Also, these

procedures are validating and verifying the

implemented code, checking that all required

functionalities are implemented.

The two chosen techniques are: the Software in

the loop (SIL) testing and the Overall testing.

4.1 Software-in-the-loop testing

A designed software will not be qualified

until implementation and test- ing is concluded.

Therefore, software in the loop testing techniques,

grants testing and correction at many levels. The

test was performed connecting a real OBC module

to the workstation using a serial RS-232

connector. Communication with the development

board is performed with a software program called

Hercules SETUP utility. The Hercules is a HW-

Group serial terminal port (RS-232) which can

send raw hexadecimal commands. Also, an extra

bus connection was needed between the CCS

program (at the workstation) and the OBC to

flash and debug the software. [9] Unfortunately,

the Hercules program has not a very good interface

and was used for small and simple tests that

required very little pre-processing.

Figure 4.1: Software in the Loop Setup

The testing software utility used as

substitution of the Hercules SETUP program was a

Python Domain Specific Language (DSL) program,

that simulates a ground station software. Moreover,

the Monitor System was enabled for the Listener so

it could be used for detecting execution problems

as it will do once deployed. It uses log files to

record any violation of the state machine rules and

the level of seriousness of it.

4.2 Overall test

The On Board Computer software

manages several tasks at the same time. These

functions are synchronized through the task

scheduler, which regulates the running tasks

depending on the priority and the readiness of

each. This test is performed using the maximum

number of task/procedures should be able to

manage at the same time by the satellite software,

checking the adaptability and performance of the

developed software with the rest of the system.

For this testing was chosen critical situations.

Short commands are un- likely to encounter major

problems, on the other hand, sending large

commands and files can become a quite serious

problem, e.g. Sending OBC boot loader command

or payload scripts. Therefore, the testing

procedure consisted in sending consecutive big

dummy files through the radio link and

verification of the files were not corrupted. The

inverse testing was also performed; instead of

uploading a large file, a short telecommand made

a request to download a large dummy file. The

telecommand generation and telemetry reception

was left to the Ground Station software, which

was implemented, as explained using a Python

DSL.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 712-717 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209712717 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 716

The following paragraph shows the script codes

performed tests using the GS software and their

results:

The different tests performed using the

GS module are: uploading a file (File Upload (slot,

filename)), download some bytes from a file (File

Download(slot, size, filename)) and check for

errors from the monitor system (check monitor()).

Options:

TC = Telecommand.

TM = Telemetry requested. SB = StackByte.

IN = Input. OUT = Output.

RET = allows to connect the script result values

with the Python environment.

I32, UIN8, etc = variable type.

FileUpload(slot,filename) creates a set of

commands to upload a file into the satellite storage

system. The ground station shell will look like this:

TC ToStackString SB[1 2] IN[ARRAY[FILE

”FILENAME” UI32 SIZE]] TM;

TC MakePointerToLast TM;

TC AppendRawFile SB[1 2 16] IN[ARRAY[UI32

SLOT UI32 SIZE]] TM; TC DROP SB[16] TM;

The first command puts the input data in the

stack. The second command creates a pointer to

the beginning of the previous string. Third one

sends the slot and size of the file, writing into

filename location. Finally, it sends a request to

drop the string address left. Figure 4.2 represents

the stack movement

Figure 4.2: Stack variation per command

executed

V. CONCLUSION
Among all possible t e l e c o m m a n d

and telemetry handler software architecture

design approaches, an unconventional one was

chosen for the Aalto-2 satellite. The goal was

to implement and test validation of the

telecommunication requirements for Aalto-2

satellite and verification of TC/TM Handler

software. The TC/TM Handler was

programmed for the Aalto-2 Satellite OBC as

Chapter 3 explains. The software in the loop

testing and the overall testing were performed to

verify and validate the code.

Firstly, a novel approach was developed for

processing telecommands (evaluate), which

uses a concatenative programming oriented

design implemented in C/Free RTOS.

Analyzing these implementation, it is found

belonging to a Type 0 Chomsky grammar.

Secondly, a simple finite state machine

was build to support the Interpreter structure

call Listener, which function is to received,

check and route in- coming commands. The

analysis of these structure reveals that it is a

Type 3 Chomsky grammar.

Combining both structures, a TC/TM

Handler is build, which satisfies the Aalto-2

communication requirements and

functionalities.

Some recommendations and

suggestions for further work are made after the

latest testing results:

The TC/TM software is being executed

inside Aalto-2 OBC software and it will fulfill

its purpose once the satellite operates and

performs its mission successfully in the real

environment.

The ground station equipment needs

the interaction of a person-user to sent and

received most of the commands. Therefore,

further work in automatising the satellite-

ground station communication could be done.

The satellite autonomy system is simple. The

user can upload scripts and schedule them in

time. Improvements (such as implementing

other PUS services or enabling quotations for

scheduling) can be done to achieve more

satellite autonomy and better overall

performance.

Scheduling are not implement. There

is a simple implementation that per- forms

scheduling but it is needed a more complete

function. However, building this functions are

not a big problem, because the TC/TM model

facilitates the scheduling execution. In other

words, the prime materials are there and only

needs someone to do it.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 712-717 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209712717 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 717

REFERENCES
[1]. CCSDS 100.0-G-1, Green Book, Telemetry

Summary of Concept and Rationale.

CCSDS, Frascati, Italy, 1987.

[2]. CCSDS 200.0-G-6, Green Book,

Telecommand Summary of Concept and

Rationale. CCSDS, Frascati, Italy, 1987.

[3]. ECSS-E-70-41A. ESA Publications

Division, Noordwijk, The Nether- lands,

2003.

[4]. CCSDS 132.0-B-2: TM Space Data Link

Protocol. Blue Book. Issue 2. CCSDS,

National Aeronautics and Space

Administration, Washing- ton DC, USA,

September 2015.

[5]. CCSDS 232.0-B-3: TC Space Data Link

Protocol. Blue Book. Issue 3. CCSDS,

National Aeronautics and Space

Administration, Washing- ton DC, USA,

September 2015.

[6]. CHOMSKY, N. On certain formal

properties of grammars. Information and

Control 2 (1959).

[7]. EICKHOFF, J. On Board Computers,

OnBoard Software and Satellite Op-

erations. Springer, Institute of Space

System, University of Stuttgart, Germany,

2011.

[8]. FACTOR -COMMUNITY. Factor

Wikipedia. http://factorcode. org/,

(accessed on March, 2016) 2016.

[9]. HW-GROUP. Hercules setup utility.

http://www.hw-group.com/, (accessed on

March, 2016) 2015.

[10]. JOVANOVIC , N. Aalto-2 satellite

attitude control system. Master ’s thesis,

Department of Electrical Engineering and

Automation, School of Electrical

Engineering, Aalto University, Espoo,

Finland, 2014.

[11]. JOV E´ , R. Contribution to the development

of pico-satellites for Earth observation and

technology demonstrators. PhD thesis,

Department of Signal Theory and

Communications, Universidad Polite´ cnica

de Catalunya, Barcelona, Spain, 2015.

[12]. KUHNO, J. Aalto-2 uhf module report.

Project Documentation, 2016.

[13]. LEE, S., HUTPUTANASIN, A.,

TOORIAN, A., WENSC HEL, L., AND

MUNAKATA , R. CubeSat Design

Specification, revision 10 ed., August 2007.

[14]. LLC, B. Concatenative Programming

Languages: Forth, Postscript, Fac- tor, Cat,

Hartmann Pipeline, Joy, Colorforth,

Concatenative Programming Language.

General Books LLC, 2010.

[15]. LTD ., R. T. E. Freertos api.

http://www.freertos.org/, (accessed on

January, 2016) 2004.

[16]. MAS SON, L. Recommendation for flight

software implementation. Tech. rep., QB50,

2014.

[17]. NASA. Reference guide to the

international space station: Utilization

edition. http://www.nasa.gov/ ((accessed on

September, 2016)

[18]. PRAKS , J., KES TILA¨ , A.,

HALLIKAINEN, M., SAARI, H., ANTILA,

H., JANHUNEN, P., AND VAINIO, R.

Aalto-1, an experimental nano satellite for

hyper spectral remote sensing. IGARSS

(2011).

[19]. PURDY, J. The big mud puddle: Why

concatenative programming

matters.http://evincarofautumn.blogspot.com

(2012).

[20]. RIWANTO, B. A. Cubesat attitude system

calibration and testing. Master ’s thesis,

Department of Electrical Engineering and

Automation, School of Electrical

Engineering, Aalto University, Espoo, Fin-

land, 2015.

[21]. THOEMEL, J., SINGARAYAR, F.,

SCHOLZ, T., MASUTTI , D.AND TES-

TANI, P., ASMA, C., REINHARD , R.,

AND MUYLAERT, J. Status of the qb50

cubesat constellation mission. International

Astronautical Congress (2014).

